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Abstract—Regular bimodal tetrafunctional networks of polydimethylsiloxane have been synthesized.
The regularity achieved pertains to the specification that each junction in the network be connected to a
constant number ¢, of short chains and ¢, of long chains thus giving a value of the network functionality
¢,=¢,+ ¢,. The short chains covered a wide range in molecular masses, thus yielding various
polydisperse chain length distributions. These networks were studied with regard to their stress—strain
isotherms in elongation. Values of the modulus in the large deformation (phantom) limit were found to
depend on the chain length distribution. This important result is in disagreement with the phantom
network theory, which assumes that the modulus of elasticity is dependent only on a mean value of the
chain length, such that the cycle rank of the network is preserved. However, better agreement with
experiment, at both limits of deformation, is obtained if the connectivity of the very short chains to the
very long ones is taken into account, in what is essentially a bimodal distribution of both network chain

lengths and cross-link functionalities.

INTRODUCTION

It is now possible to use endlinking of polymer
chains to prepare elastomeric networks having any
desired distribution of network chain lengths. The
networks so prepared have known structures in that
the molecular masses between crosslinks M,, are pre-
determined as is the distribution of these molecular
masses, and the functionality of the crosslinks are
known. Endlinking for example has been extensively
used in the preparation of model polydimethylsiloxane
(PDMS) networks [1-9]. This highly useful technique
has been extensively exploited by several groups to
obtain experimental evidence for testing the predic-
tions of the theories of rubberlike elasticity. As such,
a molecular understanding of rubberlike elasticity is
now at a relatively advanced stage.

Bimodal networks having unusual distributions
of very short and relatively long chains were also
prepared by this technique {10-14]. Model bimodal
PDMS networks were first prepared and their elasto-
meric properties extensively investigated by Mark
and coworkers [10-14]. Stress—strain isotherms of
such networks showed an anomalous gradual upturn
in the modulus at high elongation. Such an increase
in modulus constituted the first unambiguous demon-
stration of non-Gaussian effects related to limited
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chain extensibilities in non-crystallizable polymer net-
works [10-14]. These networks are also of practical
interest, since they were found to be unusually tough
elastomers even in the unfilled state.

It was already observed by Falender et al. {15, 16]
that the network chain length distribution would have
a pronounced effect on both elastomeric properties
and effective network functionality. These studies
provided interesting information on the effects of
segregation of potentially reactive vinyl sites along
the chains, and on the selectivity of the crosslinking
agent on elastomeric properties [15, 16].

The dependence of elastomeric properties on the
network chain length distribution has been the
subject of a number of recent investigations. Erman
and Mark [17] analysed non-Gaussian behaviour by
employing a distribution of end-to-end distances
obtained by Fixman and Alben and recommended
for short chains. The general shape of the isotherms
and its dependence on the number of short chains
were reproduced satisfactorily. Higgs and Ball [18]
developed a theory for random bimodal networks
that essentially describes the fluctuations of junctions
as a solution of a nonlinear integral equation. In their
formalism, the degree of extension of the network
chains differs widely for the long and the short chains.
Nonetheless, their results predicted the network
modulus to be independent of the polydispersity of
the chains. Termonia [19,20] generated bimodal
networks by computer simulation in order to detail
the synergism in the elastic properties exhibited by
such networks. His study pointed out the importance
of the polydispersity index of the short chain com-
ponents, and the results were in qualitative agreement
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with the experiments of Mark and coworkers [10-14].
Further quantitative investigation of this subject is
now in progress by the present authors. In particular,
a recent comprehensive investigation by Kloczkowski,
Mark and Erman [21] studied the fluctuations of
junctions in regular bimodal networks. The regularity
in such networks is specified by the requirement that
each junction be connected to a fixed number ¢, of
long chains and ¢, of short chains.

The present study focuses on synthesizing such
regular bimodal networks. Several types of networks
with structures that are regular in this sense will be
studied. Also, the effects of chain-length distribution
will be investigated by having the molecular masses
of the short chains cover a wide range, while the
molecular mass of the long ones will be fixed. It is the
goal of the present study to characterize the effects of
such regularity on the elastic behaviour of networks
of this type.

STRUCTURAL CONSIDERATIONS AND
ELASTICITY EQUATIONS

For a network, the reduced stress or modulus in
elongation is defined by [22, 23]

[f*1=fpfA%e —a™?) M

where f is the equilibrium force, 4* the original
cross-sectional area, « = L/L; the relative length of
the sample (its elongation), and v, the volume fraction
of polymer during the stress—strain measurements.

Molecular theories of rubberlike elasticity can be
divided into two categories: those based on networks
which deform affinely (linearly) with the macroscopic
deformation, and those based on phantom networks
[22, 23]. Both theories are based on simple Gaussian
statistics of the network-chain end-to-end distances.
In an affine network, fluctuations of the junctions
are suppressed by neighbouring chains sharing the
same region of space [22, 23]. Consequently, the chain
junctions undergo affine displacements, and the
reduced stress for a perfect network is given by

22, 23]
[/ *)ar=v. RT3 V)

where v, is the number of elastically active chains
(joined to junctions of functionality ¢ >3), R the
gas constant, T the absolute temperature, and v,c the
volume fraction of polymer chains in the system being
crosslinked which were successfully incorporated in
the network structure.

In the phantom network behaviour, which is
approached experimentally at high elongations, the
chains are assumed to be devoid of material prop-
erties, i.e. they can move freely through one another
[22-31]. The mean positions of the junctions are affine
in the strain, but the fluctuations about the mean
positions are invariant with strain. The modulus for
this model is given by [22-31}

[/ *]pn = ¢RT03 3)
where
é =Va— Uy (4)

is the cycle rank of the network, v, and g, are the
number density of the elastically-active chains and
junctions, respectively. For a perfect network having
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functionality ¢, the cycle rank is expressed as [22-31]

£ = (1 —-%)va )

where the front factor would be 4, = (1 —2/¢) and
the number of active junctions p, would be [22-31]

=2/, =[2/(¢ — ). ©®

Therefore, values of the phantom modulus are
based only on contributions from active chemical
crosslinks.

The role of topology in the phantom network is
of great importance. According to Graessley [30-33],
the cycle rank of the matrix is the number of cuts
required to reduce the network to a spanning tree
free of cyclics. This means that the cycle rank would
simply depend only on the number of chains and the
functionality of the junction ¢. That is, it would be
totally independent of the chain length distribution.
It should also be noted here that Graessley later
modified equation (5) to (7) [32]

¢ =Va—hu,=(1-2h/d), M

with 4 being an adjustable parameter between 0 and 1,
introduced to take into account possible contributions
from interchain entanglements. A consequence of
this equation is that the phantom (chemical) modulus
would have values different from those predicted
from the topology of the chemical crosslinks. More
specifically, this equation yields values of the front
factor (1 —2h/¢) that are generally higher than the
values of (1 — 2/¢) for an idealized phantom network.

The dependence of [ *] on « is generally represented
by the semi-empirical Mooney—Rivlin equation [34, 35]

f*1=2C+2Ga"! @®

where 2C, and 2C, are constants independent of «
[22, 23]. The constant 2C, is thought to approximate
the modulus in the high elongation limit of an ideal-
ized “phantom” network, where the network junctions
undergo very large fluctuations [22-31)]. The constant
(2C, + 2C,) then approximates the modulus in the
limit of very small deformations, where chain-junction
entangling suppresses the fluctuations, causing the
network chain dimensions to change affinely (linearly)
with changes in the macroscopic dimensions of the
sample [22, 23]. The constant 2C, is then viewed as
representing the decrease in modulus resulting from
the deformation becoming increasingly non-affine as
the elongation increases [22, 23].

Examples of regular bimodal networks with tetra-
functional junctions are illustrated schematically in
Fig. 1(a—). All junctions have the same functionality
(¢, =4) and each junction is connected to the same
number ¢, of long chains and ¢, of short chains such
that

Q=011+ ;. )

In this study we follow the designations of
Kloczkowski et al. [21] where regular bimodal
networks having i short chains and j long chains at
each junction are denoted by S,L;.

In Fig. 1(a), the regular bimodal network shown
has ¢, =3 and ¢,=1. All the short and the long
chains are assumed to have monodisperse distri-
butions. Here, each junction of the network S, L, is
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(a)

Fig. 1. Sketches showing parts of regular bimodal networks
(¢, =4). (a) Shows an S| L; network [in which each junction
is connected with one very short (darkened) chain (g, = 1)
and three long chains (¢, =3)]. The long chains act as
though they were hexafunctionally crosslinked, while the
short chains act as though they were tetrafunctionally
crosslinked. (b) Illustrates an §,L, network in which the
long chains appear to have an effective functionality ¢, = co.
(c) Represents an S;L, network where the long chains
appear to have ¢ = oo, while the short chains form a
three-dimensional network in which they act as though
they were tetrafunctionally crosslinked. In all cases, if the
connectivity of the very short chains to the long ones is
considered, the short chains appear to be tetrafunctionally
crosslinked.

attached to one short chain only. As such, the long
chains might act as though they are hexafunctionally
crosslinked by the short chains (¢, = 6) while the
short chains might act as though they were tetra-
functionally crosslinked. Recent theoretical treatments
neglect the connectivity of the long chains to the short
ones when studying the behaviour of the short chains
in such networks [18, 21]. Accordingly the network
represented in Fig. 1(a) is equivalent to a system of
free short chains and they are not expected to con-
tribute to the elastic modulus. Such an assumption
regarding the connectivity of the short chains is a
consequence of the network topology, and is required
for the preservation of the cycle rank (which should
be independent of the polydispersity of the chain
length distribution).

On the basis of connectivity considerations that
require the preservation of the cycle rank and neglect
the connectivity of the very short chains to the very

long ones, the phantom modulus of S;L, network
would then be [according to equation (3)] [21]

[f *]n = @/3)3/4)w, RTVEE = (1/2v,RTv¢  (10)

with the effective functionality of the long chains
¢, =6, and the quantity (3/4) is the mole fraction of
the long chains. The net result is that the expected
increase in the modulus from the increase of the
functionality of the long chains is exactly offset by the
decrease in the number of chains [from v, to (3/4) v,].

However, this analysis is in disagreement with a
wealth of experimental evidence on bimodal net-
works obtained by Mark and coworkers [10-14].
These experiments have shown that the elastomeric
properties for bimodal networks are dependent on
the mole fraction of the short chains present in the
network as well as the ratio of lengths of the short
chains to the long ones. Conclusions similar to those
of Kloczkowski ez al. [21] were reached by Higgs
and Ball [18] for random bimodal networks. How-
ever, it was recognized that this was in discord with
experiment [18].

The present authors [36-38], on the other hand,
focused attention on the short chain segments
between the junction points along the crosslinking
molecules and their connectivity to the long network
chains. Such segments were found to act as short
network chains, thus giving, inadvertently, a strongly
“regular” bimodal distribution of both the network
chain lengths and crosslink functionalities. The inter-
esting point here is that the networks investigated
were presumed to be unimodal. When the connectivity
of the short chains to the long ones was taken into
account, they were found to contribute synergistically
to the elastic modulus. Reexamination of some of the
published results on this basis provided a reasonable
explanation for their unexpectedly high values of
the elastic moduli, and also for other experimental
observations [36-38]. When the connectivity of the
very short chains to the long ones was considered in
these revised interpretations, the phantom modulus
became the sum of contributions from both the long
and short chains [36-38]:

[f*]ph = [f*]long + [f*]shon
=(1-2¢)v,RTv}¢
+(1 —=2/¢)2v,RTv% an

where ¢, is the average effective functionality associ-
ated with the long chains and ¢, is that associated
with the short ones. The effective value of [ f*],, thus
increases significantly from what would be expected
from network connectivity considerations alone. How-
ever, as the short chain length increases, values of the
modulus approach those calculated on the basis of the
network topology and the cycle rank is preserved
[36—38]. The synergism thus observed showed strong
dependence on the ratio of the chain lengths of the
short chains to the long ones. Consequently, the results
are at variance with connectivity considerations dis-
cussed above which require the preservation of the
cycle rank, regardless of the network chain length dis-
tribution or any changes in the effective functionality
sensed by the long network chains.

The disagreement could be plausibly attributed to
the widely different end-to-end vector distributions
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of the long and short network chains. Therefore, the
response of the different chains to the extension,
and thus their contributions to the modulus will
vary. This is, of course, of considerable importance
with regard to interpretation of the experimental
results.

The relevant theoretical models are based on the
approximation of a monodisperse Gaussian distri-
bution [18, 21]. If the short chains, on the other hand,
are considered to be elastically effective chains and
their connectivity to the long ones is taken into
account, then the phantom modulus according to
equation (10) would be [36-38)

L/ *n = (1 — 2/¢,)3/4)v,RTv3E
+(1—2/¢,)(1/4)v,RTv3¢
=(5/8)v,RTv32 (12)

with the value of the front factor 4, increasing by a
factor of 1.25 [from (1/2) to (5/8)).

The S,L, and S;L, networks are represented in
Fig. 1 (b and c, respectively). The junctions in such
networks are attached to more than one short chain.
As a result, the network functionality becomes large,
with ¢, — co. In the S, L, network, the short chains
were considered as equivalent to a single long chain
composed of short subchains. Neglecting the con-
nectivity of the short chains to the long ones in the
S;L, network would make the network equivalent
to a trifunctional network of short chains. The corre-
sponding phantom moduli for these S,L, and S;L,
networks would be [21]

[/ *Jw = (1/2)v,RTv32 (13)
[/ *]on = (1/4)v, RT3 + (1/3)(3/4)v,RTv32
=(1/2)v,RTv} (14)

respectively. Again, an increase in the functionality of
the long chains is offset by reduction in the function-
ality of the short chains and the number of elastically
effective chains.

If the short chains are considered to be elastically
effective and their connectivity to the long ones is con-
sidered, the phantom modulus for the S, L, networks
would be [36-38]

[/ *n = (1/2v, RTv3 + (1/2) (1/2)v,RTv 3

=(6/8)v,RTv3E (15)
and for the S;L, networks
[/ *]s = (1/4)v, RT032 + (1/2)(3/4)v,RTv 3¢
= (5/8)v, RTv%. (16)

Again, the modulus increases by a factor of 1.5
for the S, L, network, and by a factor of 1.25 for the
S, L, network.

Following the same arguments that the connectivity
of the short chains to the long ones is neglected for
networks having initial ¢, =3, the S,L, network
would become effectively a unimodal tetrafunctional
network composed of long chains only, and the S, L,
network effectively a high-functionality one. In turn,
the phantom modulus for both networks would be
given by [21]

[/ *Ten = (1/3v, RT3 a7
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However, if the connectivity of the very short
chains to the long ones is considered, the phantom
modulus for the S, L, and the S, L, networks would
be [36-38]

[f*}on = (1/2)(2/3)v,RTv32 + (1/3)(1/3)v,RTv32

= (4/9)v,RTv32 (18)
[/ *]n = (1/3)v, RT032 + (1/3)(2/3)v,RTv3¢
= (5/9)v,RTv33 (19)

respectively. Thus, when the short chains are con-
sidered to be elastically effective, the moduli for the
S, L, and S, L, networks increases by a factor of (4/3)
and (5/3), respectively.

Of particular importance is the ratio [f*],/[f*]..
The numerator is the modulus calculated on the
assumption that the high-functionality networks
are bimodal in both chain-length distribution and
crosslink functionality, and the denominator on the
assumption that these networks have simple uni-
modal distributions in long chains only. Values
calculated from the above equations are shown as a
function of the number of short chains in Fig. 2.

In the affine limit of deformation, the topology of
the network is irrelevant and the modulus would be
given by equation (2) [22, 23]. However, if arguments
neglecting the connectivity of the short chains to the
long chains are still valid in this limit, values of the
affine modulus so calculated would be less than those
predicted according to the present analysis, and they
would be given by

[ = B/4)v.RT o3¢
[f *lar = (1/2)v.RT 03¢
[/ *laar = v. RT3 (20)

for the S, L;, S,L, and S,L, networks, in the same
order.
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Fig. 2. The ratio [f*],/[f*], of the value of the phantom
modulus calculated on the assumption that such networks
have a bimodal distribution of crosslink functionality (as de-
scribed in the text) to the value calculated on the assumption
that these polydisperse chains have a unimodal unifunctional
distribution of the long chains only. The values are shown
as a function of the mole % of short chains. The dashed line
represents results for the networks having ¢, =4 and the
dotted one for those having ¢, = 3. The solid line represent
results calculated with total neglect to any contributions
from the short chains.
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In this investigation, it is important to emphasize
the essential difference between the number v, of
“active” chains (commonly used for imperfect net-
works), and the number of elastically “effective”
chains v (appearing in most elasticity theories). It is
worth noting that, in general, v # v, [29]. Flory has
shown that the number density of elasticaily effective
chains for networks of any kind is given by the uni-
versal form [39] v = 2¢, with £ =v — u. As has been
pointed out, the identification of v, with v is proper
only for perfect networks; otherwise, it is an approxi-
mation that is acceptable only for high-functionality
networks. With this in mind, the values of v, deter-
mined by branching theory were used as an approxi-
mate substitute for v in the present investigation.

Accordingly, it follows that
[f*lr=vRTv3¢ =2{RTv3 @n

22

and
Lf *ln = ERT03
with & =v, — yu, =v — u [39].

EXPERIMENTAL PROCEDURES

The silanol-terminated bifunctional polymers used in
this study were obtained from Petrach Chemicals. Standard
fractional precipitation techniques were carried out at 25° on
several samples having different molecular masses. Methyl
ethyl ketone was chosen as the solvent and methanol as the
nonsolvent. Our primary aim for carrying out this procedure
was to decrease the polydispersity index of these bifunctional
oligomers and to remove the unreactive materials (typically
cyclics) usually present in commercial PDMS samples.
Such samples appear to have 2-5% impurities of 300-1500
molecular mass. Initial polymer concentrations were about
5%, except for the 25% used for one very low molecular
weight sample (Petrach, 15-35 centistokes). The non-solvent
also had to be different for this sample, and was an 80/20
methanol/water mixture.

The samples thus fractionated were exhaustively dried
under vacuum at 70° for three days. All samples were then
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stored over molecular sieves to remove any traces of moisture.
Their molecular masses and the polydispersity index were
obtained by size exclusion chromatography (SEC) using
polydimethylsiloxane standards. The polydispersity index
M, /M, was generally below 1.3 in all cases except for the
lowest molecular mass sample, where it was 1.5, A series of
polymers ranging in molecular masses from 710 to 10,600
was utilized to prepare the networks. An additional sample
of tetra ethylene glycol having M, of 194 was used to obtain
networks having bimodal distributions with exceedingly
short chains.

The bimodal networks were prepared in bulk by mixing
the precursor chains with tetraethylorthosilicate (TEOS),
which was used as received without further purification. The
stoichiometry was controlled to achieve a fixed fraction of
long and short chains at each junction. The catalyst, stannous
2-ethylhexanoate, was present in amounts corresponding to
0.5% by weight of polymer, and the crosslinking reaction
was allowed to proceed in a glove box under N,.

The first step involved prereacting the precursor chains
present in the smaller amount, in order to facilitate regularity
of the bimodal chain length distribution around each junc-
tion. A third of the total required amount of catalyst was
employed, and the reaction was allowed to proceed for
about 5 hr before the rest of the stoichiometric balance was
added. In no case was gelatin observed at this stage. After
this second addition, the samples were placed into suitable
moulds and permitted to cure for three days. The networks
thus prepared were removed and turned over to facilitate
removal by byproducts. They were then allowed to cure
further under vacuum for two additional days at 60°. Since
only small amounts of the fractionated polymers were
available, most networks weighed only about 1.5g.

The crosslinked sheets were extracted in toluene for one
week to remove any unreacted material; the solvent was
changed once after the first two days. The networks, after
such extraction, were slowly deswollen in a series of toluene-
methanol mixtures of increasing methanol content, and then
dried under vacuum. The amounts of extracted material (w,)
were <2.5% for most of the networks. Values of the related
quantity, v,c, the volume fraction of the polymer success-
fully incorporated in the network structure, are given in
Table 1.

Table 1. Elastomeric properties of tetrafunctional regular bimodal networks

10-°M,G6)F  10°M2 W RT* 2C, 26, G
Network (gmol™') (gmol~") o P v, vy (Nmm~?) (Nmm~?) (Nmm~?) (Nmm~?) G/vRT
5.,
1 0.194 8.00 0.0131 0.893 0.799 0.301 0.221 0.187 0.094 0.281 1.27
2 0.710 8.13 00164 0882 0779 0.309 0.208 0.182 0.114 0.296 1.42
3 3.40 8.80 0.0134 0.892 0.797 0.268 0.200 0.111 0.087 0.198 0.99
4 5.40 9.30 0.0190 0.875 0.764 0.255 0.174 0.089 0.103 0.192 1.10
5 7.20 9.75 0.0154 - 0.885 0.784 0.273 0.175 0.111 0.130 0.241 1.38
6 8.90 10.2 0.0203 0.871 0.757 0.263 0.158 0.075 0.069 0.145 0.92
S,L,
1 0.194 5.40 0.0097  0.906 0.825 0.300 0.343 0.193 0.133 0.326 0.95
3 3.40 7.00 0.0244 0.861 0.739 0.229 0.216 0.183 0.129 0.312 1.45
4 5.40 8.00 0.0132 0.893 0.798 0.308 0.220 0.187 0.144 0.331 1.51
5 7.20 8.90 0.0143  0.889 0.791 0.307 0.194 0.166 0.163 0.328 1.69
6 8.90 9.75 0.0109 0.902 0.814 0.000 0.187 0.161 0.148 0.308 1.65
S;L,
1 0.194 2.80 0.0080 0914 0.841 0.294 0.679 0.193 0.086 0.279 0.41
2 0.710 3.18 0.0489 0.817 0.664 0.301 0.361 0.167 0.113 0.280 0.77
3 3.40 5.20 0.0224 0865 0749 0.335 0.298 0.252 0.134 0.386 1.30
4 5.40 6.70 0.0161 0.883 0.781 0.317 0.251 0.200 0.118 0.318 1.26
5 7.20 8.05 0.0273  0.854 0.727 0.309 0.182 0.155 0.169 0.324 1.79
6 8.90 9.32 0.0241  0.862 0.740 0.312 0.163 0.099 0.286 0.384 2.36

“Molecular mass of the short chains.

*Molecular mass of the long chains.

Sol fraction.

9Extent of reaction, as determined by branching theory [7, 8, 40].

*Volume fraction of elastically effective chains, as determined by branching theory (7, 8,40].
/Volume fraction of polymer at equilibrium swelling in toluene at 25°.
#Number density of elasticaily effective chains multiplied by RT, as determined by branching theory {7, 8, 40].
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Stress—strain isotherms were obtained on strips cut from
the various network sheets. The central test portions of the
strips had lengths of about 4.5 cm, widths of about 0.4 cm,
and thicknesses of 0.7-1.2 mm. The elongation was measured
using four fiducial marks, nearly 0.75 cm apart. Stress—strain
measurements were obtained using a sequence of increasing
values of the elongation a = ///,. Some measurements were
taken out of sequence to test for reversibility. The isotherms
were, in general, found to be reversible. In fact, in previous
studies, bimodal networks with very high proportions of short
chains gave highly reversible results for the entire isotherms
[10-14]. Generally, the test specimens did not break but in
most of the cases slipped from the clamps. This was tolerable,
since ultimate properties were not the primary concern of
the investigation.

RESULTS AND DISCUSSION

The stress-strain data were interpreted in terms
of the reduced stress or modulus, as defined in
equation (1). The equilibrium values of [f*] were
plotted against the reciprocal elongation «~! as
suggested by the Mooney—Rivlin procedure, em-
bodied in equation (8). The straight lines through the
isotherms were located by least-squares analysis. The
stress—strain isotherms are illustrated in Figs 3-5 for
S\L,, S,L,, S;L,, respectively. Values of the con-
stants 2C, and 2C, thus obtained are reported in
Table 1.

Values for the extent of reaction P, number of
elastically active chains v,, and the volume fraction of
the elastically effective chains v, were calculated from
the sol fraction w, using branching theory [7, 8, 40};
they are listed in Table 1. The experimental moduli
at large and small strains were calculated from
equation (1). The small-strain modulus [f*],s was
identified with the shear modulus G = 2C, + 2C,, and
the phantom modulus [f*], with 2C,. As already
mentioned, the constant 2C, is a measure of the
change in modulus for the transition between the two
extremes of deformation [22, 23]. It should be noted
that values of 2C, usually slightly overestimate [ f*],,
due to the lengthy extrapolation required from the
moderate-strain region covered in most experiments.
It should also be noted that dangling ends as well as
other network imperfections could act as diluent [41].

£ 02} 27
W P aetty

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(X_l
Fig. 3. Stress-strain isotherms obtained on the regular
bimodal S, L, networks in elongation at 19°. Each isotherm
is labelled according to its designation in Table 1.
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Fig. 4. Stress-strain isotherms obtained on the regular
bimodal S, L, networks; see legend to Fig. 3.

Consequently, the factor v;'” representing the
volume fraction of elastically ineffective chains should
be incorporated, even for networks studied in the dry
unswollen state. Thus, more accurate values of the
moduli would be obtained according to the equations

[f *lax = v.RT(V Vo )P; 17 (23)
U ¥l = ERT(V [ Vo) Po; 17 (24)

Values of the large deformation modulus 2C, are
plotted in Fig. 6 against the active chemical degree of
crosslinking v, multiplied by RT. Such a plot includes
the results obtained for the three types of networks,
namely S, L,, S,L, and S;L,. Filled circles represent
results for the S, L, networks, open circules for the
S,L, ones, and open triangles for the S,L, ones.
In every case, the molecular mass of the long chains
was 10,600 g/mol. The solid line represents theory,
according to which the ordinate should equal the
abscissa. In other words, it would represent the net-
work connectivity as determined from the phantom
network topology, according to equation (24). As dis-
cussed previously, the most recent theoretical models
preserve the connectivity (the cycle tank) of the net-
work regardless of chain length distribution [18, 21].
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Fig. S. Stress—strain isotherms obtained on the regular

bimodal S, L, networks; see legend to Fig. 3.
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Fig. 6. The phantom modulus, as approximated by 2C,,
shown as a function of the degree of crosslinking v,RT
as obtained from the end-linking chemistry. The circles
represent results obtained for the S; L, networks, the filled
squares for S, L, ones, and the triangles are for the S,L,
ones. The dotted line represents results calculated for the
phantom modulus based on the unimodal representation
of the networks, i.e. with total neglect of any contributions
from the short chains, according to equation (24). The solid
line represents the results for the affine modulus according
to which the ordinate should equal the abscissa, calculated
according to equations (21) and (23).

This is generally achieved by having the polydisperse
chains correspond to an average chain length. At
intermediate values of the chemical degree of inter-
linking, variation in values of 2C, is clearly demon-
strated within limits set by the inherent inaccuracies
in the Mooney-Rivlin analysis. Thus, the results
suggest a strong effect of the network chain length
distribution on the observed values of the phantom
modulus, as identified by 2C,. At relatively high and
low values of v,RT, however, the values of 2C,
approach those predicted from the simple network
connectivity.
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Fig. 7. Values of ratio 2C,/[f*], for the S,L; networks
shown as a function of the molecular mass M,(s) of
the short chains. The denominator was calculated from
equation (24), on the assumption that these networks have
simple unimodal distributions (as described in the text).
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Fig. 8. Values of the ratio 2C, /[ f*], shown as a function of

the molecular mass M, (s) of the short chains (as described

in the text). The triangles represent results obtained from the

S, L, networks, and the filled squares are for the S;L, ones.
See legend to Fig. 7.

This phenomenon is explored further in Fig. 7,
where the property of primary interest is the ratio
2C,/[f*],. The numerator is the experimentally
determined phantom modulus as identified by 2C,,
and the denominator was calculated on the assump-
tion that these networks have simple unimodal uni-
functional distributions of the long chains. The ratio
is shown as a function of the molecular weight M, (s)
of the short chains. Average values of M, that
corresponds to an average chain length distribution
are reported in Table 1. If the phantom modulus
were independent of the chain length distribution,
this ratio should have remained unity, corresponding
to the solid line. As discussed above, values of the
phantom modulus, calculated on the assumption that
these S) L, networks have a bimodal distribution of
crosslink functionalities (¢, =6 and ¢, =4), should
increase by a factor of 1.25, as represented by the
dotted horizontal line. As already mentioned, con-
sideration of the connectivity of the very short chains
violates preservation of the cycle rank. However,
within the observed scattering exhibited in Fig. 7, the
results support the taking into account of the con-
nectivity of the very short chains in what would
essentially be a bimodal bifunctional network. Thus,
the results show an unambiguous dependence of
elastomeric properties on network chain-length distri-
bution. The ratio 2C, /[ f*], decreases with an increase
in values of M, (s) of the short chains, and approaches
the expected value of unity. As expected, all the chains
would have nearly equal lengths, to the extent that the
network would appear to be unimodal with ¢ =4.

The pertinent results for the S,L, and the S;L,
networks are shown in Fig. 8. Although there is a
great deal of scatter, the ratio 2C,/[f*], at least
qualitatively follows the expected trend based on the
connectivity of the very short chains to the long ones.
Within the limits imposed by the scatter, there is
satisfactory agreement with our predictions that this
ratio should approach 1.5 for the S, L, network and
1.25 for the S;L, network. Particularly to be noted
here is the lower values of 2C,/[f*], obtained at
small values of M, (s). Such networks having a high



816
0.7 T T T T T T T
0.6 -
~N
' 0.5 -
£
E 0.4 | A A -
4 A
0.3 | 8] A A
n 0]
¢ 0.2 -
01 | -
0.0 | 1 L i 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

v,RT, N mm-2

Fig. 9. The shear modulus G for the regular bimodal net-
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percentage (ca 75 mol%) of short chains approach
the phantom behaviour of a network composed of
very short chains. This is different from the situation
with the S, L, networks, where the number of short
chains is far smaller (ca 25 mol%).

It is to be noted here that the experimental values
so interpreted are somewhat larger than the upper
limit predicted by our models. Such an enhancement
has been observed to vanish upon swelling, suggest-
ing that it is due to difficulties in reaching elastic
equilibrium when the network chains are very long
[6,22]. This could also be due to higher slopes in
Mooney-Rivlin curves for samples with high mol-
ecular mass M, between crosslinks, which makes the
lengthy extrapolation to a — oo less reliable [21]. Also
of relevance here is the fact that small changes in
the sol fraction reflect large variations in the number
of elastically active chains v,, as determined from
branching theory [7, 8].

An additional important difficulty, inherent in
the siloxane system, is the possibility of hydrolysis
of some of the TEOS, resulting in the formation of
reinforcing silica-like particles [42]. Finally, it has
recently been reported that the catalyst stannous
2-ethylhexanoate, much used to catalyse the hydro-
lysis reaction, will also catalyse chain extension of
the hydroxyl-terminated PDMS [43]. In this case, the
actual value of M between crosslinks could be higher
than that for the precursor chains.

It is useful to interpret the data in the small
deformations (affine) limit. In Fig. 9, values of G
(as approximated by 2C, + 2C,) are plotted against
values of vRT. The solid line represents theory in
which the affine modulus for a bimodal network is
given by equation (23). The dotted line shows values
of the phantom modulus [ /*},, calculated according
to equation (24). The data, so represented, do not
unambiguously suggest an appreciable intercept with
the ordinate.

The enhancement of [f*] in this limit (x—1)
could be due to any of the reasons cited above. The
interesting point here is that, at higher values of vRT,
values of G tend towards the phantom limit of the
modulus. Again, actual values of G predicted by
the constrained junction theory should fall below

M. A. SHARAF et al.

the upper bound even at small strains [10,22].
Such behaviour is essentially due to the decrease in
the degree of interpenetration with an accompanying
decrease in the severity of the constraints on the
fluctuation of junctions [10, 22]. Analyses based on
the constrained junction theory allow for such a
decrease in the degree of interpenetration as the
network chain length decreases [26-29]. The broken
line in Fig. 9 represents calculations based on the
constrained junction model, calculated according to
equations reported elsewhere [22, 23, 28]. Extrapol-
ations in the region where the affine to phantom
transition ensues amount to placing a single straight
line through two line segments of different slope.
This, not surprisingly, generally yeilds a substantial
intercept on the ordinate [7,8). Because of this
alternative interpretation, it may be misleading to
attribute the intercept to contributions from trapped
entanglements [7, 8].

Most of the results presented here concerned model
networks that are assumed to be perfect. Nevertheless,
networks so prepared may be somewhat imperfect
due to possibly inaccurate stoichiometry and/or other
conditions that would lead to incomplete crosslinking.
Also, as has been mentioned before, it may be difficult
to obtain accurate values of the sol fraction and from
them the structural parameters of the network. A last
difficulty could arise from .inhomogeneities in the
crosslinking process, as has been pointed out [48]. A
straight-forward method for testing the validity of the
predictions of the theory of Flory and Erman consists
of plotting G ~ 2C, + 2C, against 2C, ~[f*]y in
order to overcome the cited difficulties in obtaining
accurate values of the structural parameters of the net-
work. As previously discussed, 2C, can be identified
with [ f*},,, within limits set by inherent inaccuracies
in the Mooney-Rivlin procedure [41]. According to
theory [33-36], [ /*], in any network is proportional
to the effective interconnectivity of the network and,
therefore, can be used to define an effective number
of chains v and junctions u, regardless of how
incomplete the network formation. The results thus
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Fig. 10. The modulus shown as a function of the Mooney—

Rivlin estimate of the high-deformation modulus. The solid

line is for the affine limit for an imperfect network as

approximated by 2(2C,), calculated from equation (25).

The dashed line is for the phantom modulus approximated
by 2C, itself. See legend to Fig. 6.
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obtained are plotted in Fig. 10. The dashed line
represents the lower bound of the theory (the phantom
limit). The solid line approximates the upper bound
(the affinely-deforming network), calculated from
equations (21) and (23), proposed by Flory [39] for
imperfect networks:

[f *la = vRTv3 = 26 RT3 =22C)).  (25)

The results are well represented within the two limits
of deformation. Again, as the degree of crosslinking
is increased, there appears to be a trend toward the
lower bound (the phantom limit). As has been pointed
out, this is expected since the constraints on the
fluctuations of the junctions vanish with an increase
in either the degree of crosslinking or the deformation.
The results, so portrayed, argue against contributions
to the small-strain modulus from trapped entangle-
ments. The present procedure circumvents difficulties
in accurately determining chain molecular masses
and functionalities. As noted above, these difficulties
can lead to inaccuracies in the determination of the
network parameters, as well. Thus, the results are in
accord with the main premises of the constrained
junction theory and the universal treatment of imper-
fect networks set forward by Flory [39]. If the con-
nectivity of the very short chains to the very long ones
is ignored, values of the affine modulus calculated
for the S,L; and the S,L, networks, according to
equation (20), would be lower than those predicted
according to equation (2). Apparently, this is not the
case, more specifically at lower to intermediate values
of vRT. As such, the results so presented in Figs 9
and 10 are consistent with our postulations that take
into account the connectivity of the very short chains
to the very lone ones.

In any case, it does seem necessary to take into
account the connectivity of the very short network
chains to the long ones in what is essentially a bi-
modal bifunctional network. In particular, the results
demonstrate a significant dependence of the phantom
modulus on network chain length distribution. This
dependence calls into question the basic assumption
of the phantom network theory that the cycle rank is
to be preserved regardless of the polydispersity of the
chains. Finally, it is clear that accurate measurements
of the network structural parameters are absolutely
essential in order to test the molecular theories of
rubberlike elasticity.
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