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Abstract--Regular bimodal tetrafunctional networks of polydimethylsiloxane have been synthesized. 
The regularity achieved pertains to the specification that each junction in the network be connected to a 
constant number tp s of short chains and ~o I of long chains thus giving a value of the network functionality 
q~o = t& + ~l. The short chains covered a wide range in molecular masses, thus yielding various 
polydisperse chain length distributions. These networks were studied with regard to their stress-strain 
isotherms in elongation. Values of the modulus in the large deformation (phantom) limit were found to 
depend on the chain length distribution. This important result is in disagreement with the phantom 
network theory, which assumes that the modulus of elasticity is dependent only on a mean value of the 
chain length, such that the cycle rank of the network is preserved. However, better agreement with 
experiment, at both limits of deformation, is obtained if the connectivity of the very short chains to the 
very long ones is taken into account, in what is essentially a bimodal distribution of both network chain 
lengths and cross-link functionalities. 

INTRODUCTION 

It is now possible to use endlinking of polymer 
chains to prepare elastomeric networks having any 
desired distribution of network chain lengths. The 
networks so prepared have known structures in that 
the molecular masses between crosslinks M~ are pre- 
determined as is the distribution of these molecular 
masses, and the functionality of the crosslinks are 
known. Endlinking for example has been extensively 
used in the preparation of model polydimethylsiloxane 
(PDMS) networks [1-9]. This highly useful technique 
has been extensively exploited by several groups to 
obtain experimental evidence for testing the predic- 
tions of the theories of rubberlike elasticity. As such, 
a molecular understanding of rubberlike elasticity is 
now at a relatively advanced stage. 

Bimodal networks having unusual distributions 
of very short and relatively long chains were also 
prepared by this technique [10-14]. Model bimodal 
PDMS networks were first prepared and their elasto- 
meric properties extensively investigated by Mark 
and coworkers [10-14]. Stress-strain isotherms of 
such networks showed an anomalous gradual upturn 
in the modulus at high elongation. Such an increase 
in modulus constituted the first unambiguous demon- 
stration of non-Gaussian effects related to limited 
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chain extensibilities in non-crystallizable polymer net- 
works [10-14]. These networks are also of practical 
interest, since they were found to be unusually tough 
elastomers even in the unfilled state. 

It was already observed by Falender et al. [15, 16] 
that the network chain length distribution would have 
a pronounced effect on both elastomeric properties 
and effective network functionality. These studies 
provided interesting information on the effects of 
segregation of potentially reactive vinyl sites along 
the chains, and on the selectivity of the crosslinking 
agent on elastomeric properties [15, 16]. 

The dependence of elastomeric properties on the 
network chain length distribution has been the 
subject of a number of recent investigations. Erman 
and Mark [17] analysed non-Gaussian behaviour by 
employing a distribution of end-to-end distances 
obtained by Fixman and Alben and recommended 
for short chains. The general shape of the isotherms 
and its dependence on the number of short chains 
were reproduced satisfactorily. Higgs and Ball [18] 
developed a theory for random bimodal networks 
that essentially describes the fluctuations of junctions 
as a solution of a nonlinear integral equation. In their 
formalism, the degree of extension of the network 
chains differs widely for the long and the short chains. 
Nonetheless, their results predicted the network 
modulus to be independent of the polydispersity of 
the chains. Termonia [19,20] generated bimodal 
networks by computer simulation in order to detail 
the synergism in the elastic properties exhibited by 
such networks. His study pointed out the importance 
of the polydispersity index of the short chain com- 
ponents, and the results were in qualitative agreement 
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with the experiments of Mark and coworkers [10-14]. 
Further quantitative investigation of this subject is 
now in progress by the present authors. In particular, 
a recent comprehensive investigation by Kloczkowski, 
Mark and Erman [21] studied the fluctuations of 
junctions in regular bimodal networks. The regularity 
in such networks is specified by the requirement that 
each junction be connected to a fixed number ~01 of 
long chains and ~os of short chains. 

The present study focuses on synthesizing such 
regular bimodal networks. Several types of networks 
with structures that are regular in this sense will be 
studied. Also, the effects of chain-length distribution 
will be investigated by having the molecular masses 
of the short chains cover a wide range, while the 
molecular mass of the long ones will be fixed. It is the 
goal of the present study to characterize the effects of 
such regularity on the elastic behaviour of networks 
of this type. 

STRUCTURAL CONSIDERATIONS AND 
ELASTICITY EQUATIONS 

For a network, the reduced stress or modulus in 
elongation is defined by [22, 23] 

[f*] =fv~/S/A *(~ - ~t -z) (1) 

where f is the equilibrium force, A * the original 
cross-sectional area, ~ = L/L~ the relative length of 
the sample (its elongation), and v2 the volume fraction 
of polymer during the stress-strain measurements. 

Molecular theories of rubberlike elasticity can be 
divided into two categories: those based on networks 
which deform affinely (linearly) with the macroscopic 
deformation, and those based on phantom networks 
[22, 23]. Both theories are based on simple Gaussian 
statistics of the network-chain end-to-end distances. 
In an affine network, fluctuations of the junctions 
are suppressed by neighbouring chains sharing the 
same region of space [22, 23]. Consequently, the chain 
junctions undergo affine displacements, and the 
reduced stress for a perfect network is given by 
[22, 23] 

, - -  2/3 I f  ],if-- v~RTv2c (2) 

where v, is the number of elastically active chains 
(joined to junctions of functionality ~b t> 3), R the 
gas constant, T the absolute temperature, and V2c the 
volume fraction of polymer chains in the system being 
crosslinked which were successfully incorporated in 
the network structure. 

In the phantom network behaviour, which is 
approached experimentally at high elongations, the 
chains are assumed to be devoid of material prop- 
erties, i.e. they can move freely through one another 
[22-31]. The mean positions of the junctions are affine 
in the strain, but the fluctuations about the mean 
positions are invariant with strain. The modulus for 
this model is given by [22-31] 

[ f * lp h  ~- ~RTv2'~ (3) 

where 
= v , - # ,  (4) 

is the cycle rank of the network, v, and #, are the 
number density of the elastically-active chains and 
junctions, respectively. For a perfect network having 

functionality ~b, the cycle rank is expressed as [22-31] 

where the front factor would be .4, = (1 - 2/4~) and 
the number of active junctions ~. would be [22-311 

U, = (2/~b)v, = [2/(q~ - 2)1~. (6) 

Therefore, values of the phantom modulus are 
based only on contributions from active chemical 
crosslinks. 

The role of topology in the phantom network is 
of great importance. According to Graessley [30-33], 
the cycle rank of the matrix is the number of cuts 
required to reduce the network to a spanning tree 
free of cyclics. This means that the cycle rank would 
simply depend only on the number of chains and the 
functionality of the junction q~. That is, it would be 
totally independent of the chain length distribution. 
It should also be noted here that Graessley later 
modified equation (5) to (7) [32] 

= va - h#a = (1 - 2h/c~)v, (7) 

with h being an adjustable parameter between 0 and 1, 
introduced to take into account possible contributions 
from interchain entanglements. A consequence of 
this equation is that the phantom (chemical) modulus 
would have values different from those predicted 
from the topology of the chemical crosslinks. More 
specifically, this equation yields values of the front 
factor (1 - 2 h / ~ )  that are generally higher than the 
values of (1 - 2/4~) for an idealized phantom network. 

The dependence of[ f*]  on • is generally represented 
by the semi-empirical Mooney-Rivlin equation [34, 35] 

[f*] = 2C1 + 2C2~t -l (8) 

where 2C~ and 2C2 are constants independent of 
[22, 23]. The constant 2C~ is thought to approximate 
the modulus in the high elongation limit of an ideal- 
ized "phantom" network, where the network junctions 
undergo very large fluctuations [22-31]. The constant 
(2Cl + 2C2) then approximates the modulus in the 
limit of very small deformations, where chain-junction 
entangling suppresses the fluctuations, causing the 
network chain dimensions to change affmely (linearly) 
with changes in the macroscopic dimensions of the 
sample [22, 23]. The constant 2C2 is then viewed as 
representing the decrease in modulus resulting from 
the deformation becoming increasingly non-affine as 
the elongation increases [22, 23]. 

Examples of regular bimodal networks with tetra- 
functional junctions are illustrated schematically in 
Fig. l(a-c). All junctions have the same functionality 
(~Oo = 4) and each junction is connected to the same 
number q~t of long chains and q~s of short chains such 
that 

~Oo = q~ + q~s. (9) 

In this study we follow the designations of 
Kloczkowski et al. [21] where regular bimodal 
networks having i short chains and j long chains at 
each junction are denoted by S~L/. 

In Fig. l(a), the regular bimodal network shown 
has q~, = 3 and ~0 s = 1. All the short and the long 
chains are assumed to have monodisperse distri- 
butions. Here, each junction of the network S~ L3 is 
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(C) 

Fig. I. Sketches showing parts of regular bimodal networks 
(q~o = 4). (a) Shows an S I L 3 network [in which each junction 
is connected with one very short (darkened) chain (~s = l) 
and three long chains (~l = 3)]. The long chains act as 
though they were hexafunctionally crosslinked, while the 
short chains act as though they were tetrafunctionally 
crosslinked. (b) Illustrates an S2L 2 network in which the 
long chains appear to have an effective functionality q~l = ~.  
(c) Represents an S3L I network where the long chains 
appear to have ~b I = oo, while the short chains form a 
three-dimensional network in which they act as though 
they were tetrafunctionally crosslinked. In all cases, if the 
connectivity of the very short chains to the long ones is 
considered, the short chains appear to be tetrafunctionally 

crosslinked. 

attached to one short chain only. As such, the long 
chains might act as though they are hexafunctionally 
crosslinked by the short chains (~b I = 6) while the 
short chains might act as though they were tetra- 
functionally crosslinked. Recent theoretical treatments 
neglect the connectivity of the long chains to the short 
ones when studying the behaviour of the short chains 
in such networks [18, 21]. Accordingly the network 
represented in Fig. l(a) is equivalent to a system of 
free short chains and they are not expected to con- 
tribute to the elastic modulus. Such an assumption 
regarding the connectivity of the short chains is a 
consequence of the network topology, and is required 
for the preservation of the cycle rank (which should 
be independent of the polydispersity of the chain 
length distribution). 

On the basis of connectivity considerations that 
require the preservation of the cycle rank and neglect 
the connectivity of the very short chains to the very 

long ones, the phantom modulus of S 1 L 3 network 
would then be [according to equation (3)] [21] 

[f*]ph = (2/3)(3/4)vaRTv2/~ = (l /2)vaRTv2/~ (10) 

with the effective functionality of the long chains 
$1 = 6, and the quantity (3/4) is the mole fraction of 
the long chains. The net result is that the expected 
increase in the modulus from the increase of the 
functionality of the long chains is exactly offset by the 
decrease in the number of chains [from 1,' a t o  (3/4) va]. 

However, this analysis is in disagreement with a 
wealth of experimental evidence on bimodal net- 
works obtained by Mark and coworkers [10-14]. 
These experiments have shown that the elastomeric 
properties for bimodal networks are dependent on 
the mole fraction of the short chains present in the 
network as well as the ratio of lengths of the short 
chains to the long ones. Conclusions similar to those 
of Kloczkowski et al. [21] were reached by Higgs 
and Ball [18] for random bimodal networks. How- 
ever, it was recognized that this was in discord with 
experiment [18]. 

The present authors [36-38], on the other hand, 
focused attention on the short chain segments 
between the junction points along the crosslinking 
molecules and their connectivity to the long network 
chains. Such segments were found to act as short 
network chains, thus giving, inadvertently, a strongly 
" r e g u l a r "  bimodal distribution of both the network 
chain lengths and crosslink functionalities. The inter- 
esting point here is that the networks investigated 
were presumed to be unimodal. When the connectivity 
of the short chains to the long ones was taken into 
account, they were found to contribute synergistically 
to the elastic modulus. Reexamination of some of the 
published results on this basis provided a reasonable 
explanation for their unexpectedly high values of 
the elastic moduli, and also for other experimental 
observations [36-38]. When the connectivity of the 
very short chains to the long ones was considered in 
these revised interpretations, the phantom modulus 
became the sum of contributions from both the long 
and short chains [36-38]: 

[f*]ph = [f*]~o.g + [f*]~hon 

= (l -- 2c~l)v~RTvZz~ 

- 2 / q ~ ) 2 v a R l v 2 ~  (l l) 

where ~ is the average effective functionality associ- 
ated with the long chains and q~ is that associated 
with the short ones. The effective value of [f*]ph thus 
increases significantly from what would be expected 
from network connectivity considerations alone. How- 
ever, as the short chain length increases, values of the 
modulus approach those calculated on the basis of the 
network topology and the cycle rank is preserved 
[36-38]. The synergism thus observed showed strong 
dependence on the ratio of the chain lengths of the 
short chains to the long ones. Consequently, the results 
are at variance with connectivity considerations dis- 
cussed above which require the preservation of the 
cycle rank, regardless of the network chain length dis- 
tribution or any changes in the effective functionality 
sensed by the long network chains. 

The disagreement could be plausibly attributed to 
the widely different end-to-end vector distributions 



812 M. A. SHARA~ et al. 

of the long and short network chains. Therefore, the 
response of the different chains to the extension, 
and thus their contributions to the modulus will 
vary. This is, of course, of considerable importance 
with regard to interpretation of the experimental 
results. 

The relevant theoretical models are based on the 
approximation of a monodisperse Gaussian distri- 
bution [18, 21]. If the short chains, on the other hand, 
are considered to be elastically effective chains and 
their connectivity to the long ones is taken into 
account, then the phantom modulus according to 
equation (10) would be [36-38] 

[f*]ph = (1 -- 2/t~l) (3/4)Va RTv~/~ 

+ (l - 2/qb~)(1/4)v~RTv~/~ 

= (5/8)v~RTv2/3 c (12) 

with the value of the front factor A,  increasing by a 
factor of 1.25 [from (1/2) to (5/8)]. 

The S2L ~ and S3LI networks are represented in 
Fig. 1 (b and c, respectively). The junctions in such 
networks are attached to more than one short chain. 
As a result, the network functionality becomes large, 
with qS~ ~ or. In the $2L2 network, the short chains 
were considered as equivalent to a single long chain 
composed of short subchains. Neglecting the con- 
nectivity of the short chains to the long ones in the 
S3Lt network would make the network equivalent 
to a trifunctional network of short chains. The corre- 
sponding phantom moduli for these $2L2 and SaL t 
networks would be [21] 

[f*]ph = (I/2)vaRTV~ (13) 

[ f * l p h  = (1/4)VaRTv~/~ -t- (1/3)(3/4)v, RTv~g 

= (I/2)v, RTv~/~ (14) 

respectively. Again, an increase in the functionality of 
the long chains is offset by reduction in the function- 
ality of the short chains and the number of elastically 
effective chains. 

If  the short chains are considered to be elastically 
effective and their connectivity to the long ones is con- 
sidered, the phantom modulus for the S~ L 2 networks 
would be [36-38] 

[f*]ph = (1/2)v, RTv~/~ + (1/2) (1/2)v, RTv22/~ 

= (6/8)va RTv~/~ 

and for the $3 L~ networks 

[f*]ph = (1/4)v~RTv~/~ + (1/2)(3/4)v, RTv~g 

= (5/8)v, RTv~/~. (16) 

Again, the modulus increases by a factor of 1.5 
for the S2L 2 network, and by a factor of 1.25 for the 
S3Lt network. 

Following the same arguments that the connectivity 
of  the short chains to the long ones is neglected for 
networks having initial tpo = 3, the St L 2 network 
would become effectively a unimodal tetrafunctional 
network composed of long chains only, and the S2L~ 
network effectively a high-functionality one. In turn, 
the phantom modulus for both networks would be 
given by [21 ] 

[ f * ] p h  = (l/3)vaRTv~/~ • (17) 

However, if the connectivity of the very short 
chains to the long ones is considered, the phantom 
modulus for the St L2 and the $2 Lm networks would 
be [36-38] 

[f*lph = (1/2)(2/3)vaaTv~/~ + (1/3)(I/3)vaRTv~/~ 

-- (4/9)va RTv~/~ (18) 

I f  *]ph = (1/3)Va RTv ~/~ + (1/3) (2/3)v a RTv ~/~ 

= (5/9)v~RTv~ (19) 

respectively. Thus, when the short chains are con- 
sidered to be elastically effective, the moduli for the 
S l L 2 and S2L m networks increases by a factor of (4/3) 
and (5/3), respectively. 

Of particular importance is the ratio [f*]b/[f*],. 
The numerator is the modulus calculated on the 
assumption that the high-functionality networks 
are bimodal in both chain-length distribution and 
crosslink functionality, and the denominator on the 
assumption that these networks have simple uni- 
modal distributions in long chains only. Values 
calculated from the above equations are shown as a 
function of the number of short chains in Fig. 2. 

In the affine limit of deformation, the topology of 
the network is irrelevant and the modulus would be 
given by equation (2) [22, 23]. However, if arguments 
neglecting the connectivity of the short chains to the 
long chains are still valid in this limit, values of the 
affine modulus so calculated would be less than those 
predicted according to the present analysis, and they 
would be given by 

[ f* ]~  = (3/4)v~ RTv2/~ 

[f*laff = (1/2)v, RTv2/~ 
[f*laff : v, RTv2~ (20) 

for the SIL3, $2L2 and S3LI networks, in the same 
order. 
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Fig. 2. The ratio [f*]b/[f*]u of the value of the phantom 
modulus calculated on the assumption that such networks 
have a bimodal distribution ofcrosslink functionality (as de- 
scribed in the text) to the value calculated on the assumption 
that these polydisperse chains have a unimodal unifunctional 
distribution of the long chains only. The values are shown 
as a function of the mole % of short chains. The dashed line 
represents results for the networks having ~Po = 4 and the 
dotted one for those having ~Po = 3. The solid line represent 
results calculated with total neglect to any contributions 

from the short chains. 
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In  this  inves t iga t ion ,  it  is i m p o r t a n t  to  emphas i ze  
the  essent ia l  d i f ference b e t w e e n  the  n u m b e r  v a o f  
"active" cha ins  ( c o m m o n l y  used  for  imper fec t  net-  
works) ,  a n d  the  n u m b e r  o f  elast ical ly "ef fec t ive"  
cha ins  v ( appea r ing  in m o s t  elast ici ty theor ies) .  I t  is 
w o r t h  no t i ng  tha t ,  in general ,  v :/: va [29]. F l o r y  has  
s h o w n  tha t  t he  n u m b e r  dens i ty  o f  elastically effective 
cha ins  fo r  n e t w o r k s  o f  any  k ind  is given by the  uni-  
versal  f o r m  [39] v = 2~, wi th  ~ = v - #. As  has  been  
p o i n t e d  out ,  the  ident i f ica t ion  o f  va wi th  v is p r o p e r  
only  for  pe r fec t  ne tworks ;  o therwise ,  it is an  approx i -  
m a t i o n  tha t  is accep tab le  only  for  h igh- func t iona l i ty  
ne tworks .  W i t h  this  in mind ,  the  values  o f  va deter-  
m i n e d  by  b r a n c h i n g  theo ry  were  used  as an  app rox i -  
m a t e  subs t i tu te  for  v in the  p re sen t  inves t igat ion.  
Accord ing ly ,  it fo l lows tha t  

* _ 2 / 3  [f ]aft- vRTVEc = 2~RTv~/~ (21) 

and 

[f*lph = ~ RTv ~/~ (22) 

wi th  ~ = v~ - #~ = v - / ~  [39]. 

E X P E R I M E N T A L  P R O C E D U R E S  

The silanol-terminated bifunctional polymers used in 
this study were obtained from Petrach Chemicals. Standard 
fractional precipitation techniques were carried out at 25 ° on 
several samples having different molecular masses. Methyl 
ethyl ketone was chosen as the solvent and methanol as the 
nonsolvent. Our primary aim for carrying out this procedure 
was to decrease the polydispersity index of  these bifunctional 
oligomers and to remove the unreactive materials (typically 
cyclics) usually present in commercial PDMS samples. 
Such samples appear to have 2-5% impurities o f  300-1500 
molecular mass. Initial polymer concentrations were about 
5%, except for the 25% used for one very low molecular 
weight sample (Petrach, 15-35 centistokes). The non-solvent 
also had to be different for this sample, and was an 80/20 
methanol/water mixture. 

The samples thus fractionated were exhaustively dried 
under vacuum at 70 ° for three days. All samples were then 

stored over molecular sieves to remove any traces of  moisture. 
Their molecular masses and the polydispersity index were 
obtained by size exclusion chromatography (SEC) using 
polydimethyisiloxane standards. The polydispersity index 
/i;/,,/.~/" n was generally below 1.3 in all cases except for the 
lowest molecular mass sample, where it was 1.5. A series of 
polymers ranging in molecular masses from 710 to 10,600 
was utilized to prepare the networks. An additional sample 
of  tetra ethylene glycol having A;] n of  194 was used to obtain 
networks having bimodal distributions with exceedingly 
short chains. 

The bimodal networks were prepared in bulk by mixing 
the precursor chains with tetraethylorthosilicate (TEOS), 
which was used as received without further purification. The 
stoichiometry was controlled to achieve a fixed fraction of  
long and short chains at each junction. The catalyst, stannous 
2-ethylhexanoate, was present in amounts corresponding to 
0.5% by weight o f  polymer, and the crosslinking reaction 
was allowed to proceed in a glove box under N2. 

The first step involved prereacting the precursor chains 
present in the smaller amount, in order to facilitate regularity 
of  the bimodal chain length distribution around each junc- 
tion. A third of  the total required amount of catalyst was 
employed, and the reaction was allowed to proceed for 
about 5 hr before the rest of  the stoichiometric balance was 
added. In no case was gelatin observed at this stage. After 
this second addition, the samples were placed into suitable 
moulds and permitted to cure for three days. The networks 
thus prepared were removed and turned over to facilitate 
removal by byproducts. They were then allowed to cure 
further under vacuum for two additional days at 60 ° . Since 
only small amounts of  the fractionated polymers were 
available, most networks weighed only about 1.5 g. 

The crosslinked sheets were extracted in toluene for one 
week to remove any unreacted material; the solvent was 
changed once after the first two days. The networks, after 
such extraction, were slowly deswollen in a series of  toluene- 
methanol mixtures of  increasing methanol content, and then 
dried under vacuum. The amounts of  extracted material (to S) 
were < 2.5% for most of  the networks. Values of  the related 
quantity, V2c, the volume fraction of the polymer success- 
fully incorporated in the network structure, are given in 
Table 1. 

Table 1. Elastomeric properties of tetrafunctional regular bimodal networks 

10-3Mn(s) a 10 3Mnb vaRT s 2C1 2C2 G 
Pa v2f (Nmm -2) (Nmm 2) (Nmm-2) (Nmm 2) G/v~RT N et w ork  (g tool - 1) (g mol- i ) t~s¢ v2, 

81Lj 
1 0.194 8.00 0.0131 0 .893  0 .799  0.301 0.221 0.187 0.094 0.281 1.27 
2 0.710 8.13 0.0164 0.882 0.779 0.309 0.208 0.182 0. I 14 0.296 1.42 
3 3.40 8.80 0.0134 0.892 0.797 0.268 0.200 O. I I I 0.087 O. 198 0.99 
4 5.40 9.30 0 .0190 0 .875 0 .764  0.255 0.174 0.089 0.103 0.192 1.10 
5 7.20 9.75 0 .0154 0 .885 0 .784  0.273 0.175 0.111 0.130 0.241 1.38 
6 8.90 10.2 0.0203 0.871 0 .757  0.263 0.158 0.075 0.069 0.145 0.92 

S:Lz 
1 0.194 5.40 0 .0097 0 .906  0 .825  0,300 0.343 0.193 0.133 0.326 0.95 
3 3.40 7.00 0 .0244 0.861 0 .739  0.229 0.216 0.183 0.129 0.312 1.45 
4 5.40 8.00 0 .0132 0 .893 0 .798  0.308 0.220 0.187 0.144 0.331 1.51 
5 7.20 8.90 0 .0143 0 .889  0.791 0.307 0.194 0.166 0.163 0.328 1.69 
6 8.90 9.75 0 .0109 0 .902  0 .814  0.000 0.187 0.161 0.148 0.308 1.65 

S~LI 
I 0.194 2.80 0 .0080 0 .914  0.841 0.294 0.679 0.193 0.086 0.279 0.41 
2 0.710 3.18 0 .0489 0 .817 0 .664  0.301 0.361 0.167 0.113 0.280 0.77 
3 3.40 5.20 0 .0224  0 .865 0 .749  0.335 0.298 0.252 0.134 0.386 1.30 
4 5.40 6.70 0.0161 0 .883  0.781 0.317 0.251 0.200 0.118 0.318 1.26 
5 7.20 8.05 0 .0273 0 .854  0 .727  0.309 0.182 0.155 0.169 0.324 1.79 
6 8.90 9.32 0.0241 0 .862  0 .740  0.312 0.163 0.099 0.286 0.384 2.36 

°Molecular mass o f  the short chains. 
~Molecular mass o f  the long chains. 
CSol fraction. 
aExtent of reaction, as determined by branching theory [7, 8, 40]. 
'Volume fraction of elastically effective chains, as determined by branching theory [7, 8,40]. 
/Volume fraction of polymer at equilibrium swelling in toluene at 25 ° . 
gNumber density of elastically effective chains multiplied by RT, as determined by branching theory [7, 8, 40]. 
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Stress-strain isotherms were obtained on strips cut from 
the various network sheets. The central test portions of the 
strips had lengths of about 4.5 cm, widths of about 0.4 era, 
and thicknesses of 0.7-1.2 mm. The elongation was measured 
using four fiducial marks, nearly 0.75 crn apart. Stress-strain 
measurements were obtained using a sequence of increasing 
values of the elongation ~ = 1/1o. Some measurements were 
taken out of sequence to test for reversibility. The isotherms 
were, in general, found to be reversible. In fact, in previous 
studies, bimodal networks with very high proportions of short 
chains gave highly reversible results for the entire isotherms 
[10-14]. Generally, the test specimens did not break but in 
most of the cases slipped from the clamps. This was tolerable, 
since ultimate properties were not the primary concern of 
the investigation. 

RESULTS AND DISCUSSION 

The stress-strain data were interpreted in terms 
of the reduced stress or modulus, as defined in 
equation (1). The equilibrium values of [f*] were 
plotted against the reciprocal elongation ~- t  as 
suggested by the Mooney-Rivlin procedure, em- 
bodied in equation (8). The straight lines through the 
isotherms were located by least-squares analysis. The 
stress-strain isotherms are illustrated in Figs 3-5 for 
SIL3, $2L2, S3LI, respectively. Values of the con- 
stants 2C] and 2C2 thus obtained are reported in 
Table 1. 

Values for the extent of reaction P, number of 
elastically active chains va, and the volume fraction of 
the elastically effective chains v 2 were calculated from 
the sol fraction co s using branching theory [7, 8, 40]; 
they are listed in Table 1. The experimental moduli 
at large and small strains were calculated from 
equation (1). The small-strain modulus [f*Lff was 
identified with the shear modulus G = 2C~ + 2C2, and 
the phantom modulus [f*]ph with 2Cl. AS already 
mentioned, the constant 2C2 is a measure of the 
change in modulus for the transition between the two 
extremes of deformation [22, 23]. It should be noted 
that values of 2C~ usually slightly overestimate [f*]ph 
due to the lengthy extrapolation required from the 
moderate-strain region covered in most experiments. 
It should also be noted that dangling ends as well as 
other network imperfections could act as diluent [41]. 

0 . 3 4  

I | I I I I ' 

SS 0 . 3 0  

z. J :  . ~  0.26 

0 . 2 2  ' ' ' ' ' ' I 

0 .2  0 . 3  0 .4  0 .5  0 .6  0 . 7  0 . 0  0 .9  1 

Fig. 4. Stress-strain isotherms obtained on the regular 
bimodal $2 ~ networks; see legend to Fig. 3. 

Consequently, the factor v~ ]/3 representing the 
volume fraction of dasticaUy ineffective chains should 
be incorporated, even for networks studied in the dry 
unswollen state. Thus, more accurate values of the 
moduli would be obtained according to the equations 

[f*]~f = v a RT(V/Vo)2/3v 2 ]/3 (23) 

[f*]ph = ~ RT(V/Vo)2/3v ~ I/3 (24) 

Values of the large deformation modulus 2Cl are 
plotted in Fig. 6 against the active chemical degree of 
crosslinking va multiplied by RT. Such a plot includes 
the results obtained for the three types of networks, 
namely Sl L3, $2L2 and S3Lt. Filled circles represent 
results for the $1La networks, open circules for the 
$2L2 ones, and open triangles for the S3LI ones. 
In every case, the molecular mass of the long chains 
was 10,600 g/mol. The solid line represents theory, 
according to which the ordinate should equal the 
abscissa. In other words, it would represent the net- 
work connectivity as determined from the phantom 
network topology, according to equation (24). As dis- 
cussed previously, the most recent theoretical models 
preserve the connectivity (the cycle tank) of the net- 
work regardless of chain length distribution [18, 21]. 

I I I I • I I 

0 .3  

'E 5 
[= 0 .2  s 

4 

~" 0.1 

0 I ' I I , I I 

0 . 2  0 .3  0 .4  0 .5  0 .6  0 . 7  0 . 8  0 . 9  1 .0  

(~-1 

Fig. 3. Stress-strain isotherms obtained on the regular 
bimodal S l L 3 networks in elongation at 19 °. Each isotherm 

is labelled according to its designation in Table 1. 

0 . 4 0  • , , I , , I [ 
3 I 

¢~ 0 . 3 6  e 

[:: 0.32 ~ ' ~  

0.28 

0 . 2 4  

0 . 2 0  I I I : i : , , 

0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 .0  

Fig. 5. Stress-strain isotherms obtained on the regular 
bimodal S3L I networks; see legend to Fig. 3. 
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v,RT, N mm "2 10 "3 Mn, g rnol "1 
Fig. 8. Values of the ratio 2C z/[f*], shown as a function of 

Fig. 6. The phantom modulus, as approximated by 2C~, 
shown as a function of the degree of crosslinking vaRT 
as obtained from the end-linking chemistry. The circles 
represent results obtained for the S~ L 3 networks, the filled 
squares for $2L2 ones, and the triangles are for the S3LI 
ones. The dotted line represents results calculated for the 
phantom modulus based on the unimodal representation 
of the networks, i.e. with total neglect of any contributions 
from the short chains, according to equation (24). The solid 
line represents the results for the affine modulus according 
to which the ordinate should equal the abscissa, calculated 

according to equations (21) and (23). 

This is generally achieved by having the polydisperse 
chains correspond to an average chain length. At 
intermediate values of the chemical degree of inter- 
linking, variation in values of 2Cl is clearly demon- 
strated within limits set by the inherent inaccuracies 
in the Mooney-Rivlin analysis. Thus, the results 
suggest a strong effect of the network chain length 
distribution on the observed values of the phantom 
modulus, as identified by 2C~. At relatively high and 
low values of vaRT, however, the values of 2C~ 
approach those predicted from the simple network 
connectivity. 

1 . 8  

F-q 1 .4  41 
q i  
ImmO 

C 
~1 1 .0  

I I I I 

0 . 6  I I I I 

0 2 4 6 8 0 

10 "s M n (S),  g tool  "1 
Fig. 7. Values of ratio 2Cfl[f*], for the S~L3 networks 
shown as a function of the molecular mass M.(s) of 
the short chains. The denominator was calculated from 
equation (24), on the assumption that these networks have 
simple unimodal distributions (as described in the text). 

the molecular mass M.(s) of the short chains (as described 
in the text). The triangles represent results obtained from the 
$2L2 networks, and the filled squares are for the S3L~ ones. 

See legend to Fig. 7. 

This phenomenon is explored further in Fig. 7, 
where the property of primary interest is the ratio 
2Cl/[f*].. The numerator is the experimentally 
determined phantom modulus as identified by 2C~, 
and the denominator was calculated on the assump- 
tion that these networks have simple unimodal uni- 
functional distributions of the long chains. The ratio 
is shown as a function of the molecular weight M,(s) 
of the short chains. Average values of M. that 
corresponds to an average chain length distribution 
are reported in Table 1. If the phantom modulus 
were independent of the chain length distribution, 
this ratio should have remained unity, corresponding 
to the solid line. As discussed above, values of the 
phantom modulus, calculated on the assumption that 
these $1 L3 networks have a bimodal distribution of 
crosslink functionalities (~l--~" 6 and t~s = 4), should 
increase by a factor of 1.25, as represented by the 
dotted horizontal line. As already mentioned, con- 
sideration of the connectivity of the very short chains 
violates preservation of the cycle rank. However, 
within the observed scattering exhibited in Fig. 7, the 
results support the taking into account of the con- 
nectivity of the very short chains in what would 
essentially be a bimodal bifunctional network. Thus, 
the results show an unambiguous dependence of 
elastomeric properties on network chain-length distri- 
bution. The ratio 2C1/[f*L decreases with an increase 
in values of M. (s) of the short chains, and approaches 
the expected value of unity. As expected, all the chains 
would have nearly equal lengths, to the extent that the 
network would appear to be unimodal with ~b = 4. 

The pertinent results for the S~L2 and the S3L l 
networks are shown in Fig. 8. Although there is a 
great deal of scatter, the ratio 2Cl/[f*], at least 
qualitatively follows the expected trend based on the 
connectivity of the very short chains to the long ones. 
Within the limits imposed by the scatter, there is 
satisfactory agreement with our predictions that this 
ratio should approach 1.5 for the $2L2 network and 
1.25 for the S3L~ network. Particularly to be noted 
here is the lower values of 2C~/[f*], obtained at 
small values of M.(s). Such networks having a high 
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Fig. 9. The shear modulus G for the regular bimodal net- 
works, as approximated by 2Cl + 2C2, shown as a function 

of vaRT. See legend to Fig. 6. 

percentage (ca 75 mol%) of short chains approach 
the phantom behaviour of a network composed of 
very short chains. This is different from the situation 
with the S~L3 networks, where the number of short 
chains is far smaller (ca 25 mol%). 

It is to be noted here that the experimental values 
so interpreted are somewhat larger than the upper 
limit predicted by our models. Such an enhancement 
has been observed to vanish upon swelling, suggest- 
ing that it is due to difficulties in reaching elastic 
equilibrium when the network chains are very long 
[6, 22]. This could also be due to higher slopes in 
Mooney-Rivlin curves for samples with high mol- 
ecular mass M, between crosslinks, which makes the 
lengthy extrapolation to ~t --, oo less reliable [21]. Also 
of relevance here is the fact that small changes in 
the sol fraction reflect large variations in the number 
of elastically active chains va, as determined from 
branching theory [7, 8]. 

An additional important difficulty, inherent in 
the siloxane system, is the possibility of hydrolysis 
of some of the TEOS, resulting in the formation of 
reinforcing silica-like particles [42]. Finally, it has 
recently been reported that the catalyst stannous 
2-ethylhexanoate, much used to catalyse the hydro- 
lysis reaction, will also catalyse chain extension of 
the hydroxyl-terminated PDMS [43]. In this case, the 
actual value of Mn between crosslinks could be higher 
than that for the precursor chains. 

It is useful to interpret the data in the small 
deformations (affine) limit. In Fig. 9, values of G 
(as approximated by 2C1 + 2C2) are plotted against 
values of v R T .  The solid line represents theory in 
which the affine modulus for a bimodal network is 
given by equation (23). The dotted line shows values 
of the phantom modulus [f*]oh calculated according 
to equation (24). The data, so represented, do not 
unambiguously suggest an appreciable intercept with 
the ordinate. 

The enhancement of [f*] in this limit (~t--.l) 
could be due to any of the reasons cited above. The 
interesting point here is that, at higher values of v RT, 
values of G tend towards the phantom limit of the 
modulus. Again, actual values of  G predicted by 
the constrained junction theory should fall below 

the upper bound even at small strains [10,22]. 
Such behaviour is essentially due to the decrease in 
the degree of  interpenetration with an accompanying 
decrease in the severity of the constraints on the 
fluctuation of junctions [10, 22]. Analyses based on 
the constrained junction theory allow for such a 
decrease in the degree of interpenetration as the 
network chain length decreases [26-29]. The broken 
line in Fig. 9 represents calculations based on the 
constrained junction model, calculated according to 
equations reported elsewhere [22, 23, 28]. Extrapol- 
ations in the region where the affine to phantom 
transition ensues amount to placing a single straight 
line through two line segments of different slope. 
This, not surprisingly, generally yeilds a substantial 
intercept on the ordinate [7, 8]. Because of this 
alternative interpretation, it may be misleading to 
attribute the intercept to contributions from trapped 
entanglements [7, 8]. 

Most of the results presented here concerned model 
networks that are assumed to be perfect. Nevertheless, 
networks so prepared may be somewhat imperfect 
due to possibly inaccurate stoichiometry and/or other 
conditions that would lead to incomplete crosslinking. 
Also, as has been mentioned before, it may be difficult 
to obtain accurate values of the sol fraction and from 
them the structural parameters of the network. A last 
difficulty could arise from jnhomogeneities in the 
crosslinking process, as has been pointed out [48]. A 
straight-forward method for testing the validity of the 
predictions of the theory of Flory and Erman consists 
of plotting G ~ 2C t + 2C 2 against 2C~ ~ [f*]ph in 
order to overcome the cited difficulties in obtaining 
accurate values of the structural parameters of the net- 
work. As previously discussed, 2C] can be identified 
with [f*]ph, within limits set by inherent inaccuracies 
in the Mooney-Rivlin procedure [41]. According to 
theory [33-36], [f*]ph in any network is proportional 
to the effective interconnectivity of the network and, 
therefore, can be used to define an effective number 
of chains v and junctions p, regardless of how 
incomplete the network formation. The results thus 
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Fig. 10. The modulus shown as a function of the Mooney- 
Rivlin estimate of the high-deformation modulus. The solid 
line is for the affine limit for an imperfect network as 
approximated by 2(2C0, calculated from equation (25). 
The dashed line is for the phantom modulus approximated 

by 2Ct itself. See legend to Fig. 6. 
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obtained are plotted in Fig. 10. The dashed line 
represents the lower bound of  the theory (the phantom 
limit). The solid line approximates the upper bound 
(the affinely-deforming network), calculated from 
equations (21) and (23), proposed by Flory [39] for 
imperfect networks: 

[f*]afr = vRTv~/~ = 2~RTv~/~ = 2(2C~). (25) 

The results are well represented within the two limits 
of  deformation. Again, as the degree of  crosslinking 
is increased, there appears to be a trend toward the 
lower bound (the phantom limit). As has been pointed 
out, this is expected since the constraints on the 
fluctuations of  the junctions vanish with an increase 
in either the degree of  crosslinking or the deformation. 
The results, so portrayed, argue against contributions 
to the small-strain modulus from trapped entangle- 
ments. The present procedure circumvents difficulties 
in accurately determining chain molecular masses 
and functionalities. As noted above, these difficulties 
can lead to inaccuracies in the determination of  the 
network parameters, as well. Thus, the results are in 
accord with the main premises of  the constrained 
junction theory and the universal treatment of  imper- 
fect networks set forward by Flory [39]. If  the con- 
nectivity of  the very short chains to the very long ones 
is ignored, values of  the affine modulus calculated 
for the Sl L3 and the $2L2 networks, according to 
equat ion (20), would be lower than those predicted 
according to equat ion (2). Apparently, this is not  the 
case, more specifically at lower to intermediate values 
of  v R T .  As such, the results so presented in Figs 9 
and 10 are consistent with our postulations that take 
into account the connectivity of  the very short chains 
to the very lone ones. 

In any case, it does seem necessary to take into 
account the connectivity of  the very short network 
chains to the long ones in what is essentially a bi- 
modal  bifunctional network. In particular, the results 
demonstrate a significant dependence of  the phantom 
modulus on network chain length distribution. This 
dependence calls into question the basic assumption 
of  the phantom network theory that the cycle rank is 
to be preserved regardless of  the polydispersity of  the 
chains. Finally, it is clear that accurate measurements 
of  the network structural parameters are absolutely 
essential in order to test the molecular theories of  
rubberlike elasticity. 
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